Course

Artificial Intelligence Training

5.00 ( 2 ) | 250 Enrolled

Artificial intelligence is the simulation of human intelligence processes by machines, especially computer systems. Specific applications of AI include expert systems, natural language processing, speech recognition and machine vision.

AI ONLINE TRAINING

  • Live Online Interactive training by Certified experts
  • 24×7 assistance and support
  • Fast-track / Regular / Weekend Batches
  • Interview Q&A practice

Register For Free Demo

 AI TRAINING VIDEOS

  • High Quality pre-recorded AI Training videos
  • AI Training material designed by Experts
  • Learning Management System access
  • Interview Q&A practice

Buy Now

 

AI Training process

All the training sessions will be provided by LIVE Online Meeting using WebEx or GoToMeeting, with one-on-one trainer student Interaction in real time.

Also, we provide BASIS pre-recorded High quality real time IT training Videos.

About Trainers

Our Trainers are expert in implementation projects and support projects. In the training real time scenarios will be covered which helps the job seeker to handle the projects easily.

Who should join?

  • Fresher
  • Consultants
  • End users
  • IT/Business analysts
  • Project Managers
  • Project team members

 

AI TRAINING Course Content

Getting started with AI

  • Limitations of Machine Learning
  • Need for Data Scientists
  • Foundation of Data Science
  • What is Business Intelligence
  • What is Data Analysis
  • What is Data Mining
  • Value Chain
  • Types of Analytics
  • Lifecycle Probability
  • Analytics Project Lifecycle
  • Advantage of Deep Learning over Machine learning
  • Reasons for Deep Learning
  • Real-Life use cases of Deep Learning
  • Review of Machine Learning

DATA

  • Basis of Data Categorization
  • Types of Data
  • Data Collection Types
  • Forms of Data & Sources
  • Data Quality & Changes
  • Data Quality Issues
  • Data Quality Story
  • What is Data Architecture
  • Components of Data Architecture
  • OLTP vs. OLAP
  • How is Data Stored?
  • What is Big Data?
  • 5 Vs of Big Data
  • Big Data Architecture
  • Big Data Technologies
  • Big Data Challenge
  • Big Data Requirements
  • Big Data Distributed Computing & Complexity
  • Hadoop
  • Map Reduce Framework
  • Hadoop Ecosystem

Data Science is Deep Dive

  • Why Data Scientists are in demand
  • What is a Data Product
  • The growing need for Data Science
  • Large Scale Analysis Cost vs Storage
  • Data Science Skills
  • Data Science Use Cases
  • Data Science Project Life Cycle & Stages
  • Data Acquisition
  • Where to source data
  • Techniques
  • Evaluating input data
  • Data formats
  • Data Quantity
  • Data Quality
  • Resolution Techniques
  • Data Transformation
  • File Format Conversions
  • Anonymization
  • Python Overview
  • About Interpreted Languages
  • Advantages/Disadvantages of Python pydoc.
  • Starting Python
  • Interpreter PATH
  • Using the Interpreter
  • Running a Python Script
  • Using Variables
  • Keywords
  • Built-in Functions
  • Strings Different Literals
  • Math Operators and Expressions
  • Writing to the Screen
  • String Formatting
  • Command Line Parameters and Flow Control.
  • Lists
  • Tuples
  • Indexing and Slicing
  • Iterating through a Sequence
  • Functions for all Sequences
  • The xrange() function
  • List Comprehensions
  • Generator Expressions
  • Dictionaries and Sets

  • Learning NumPy
  • Introduction to Pandas
  • Creating Data Frames
  • Grouping Sorting
  • Plotting Data
  • Creating Functions
  • Slicing/Dicing Operations
  • Functions
  • Function Parameters
  • Global Variables
  • Variable Scope and Returning Values. Sorting
  • Alternate Keys
  • Lambda Functions
  • Sorting Collections of Collections
  • Classes & OOPs
  • What is Statistics
  • Descriptive Statistics
  • Central Tendency Measures
  • The Story of Average
  • Dispersion Measures
  • Data Distributions
  • Central Limit Theorem
  • What is Sampling
  • Why Sampling
  • Sampling Methods
  • Inferential Statistics
  • What is Hypothesis testing
  • Confidence Level
  • Degrees of freedom
  • what is value
  • Chi-Square test
  • What is ANOVA
  • Correlation vs Regression
  • Uses of Correlation & Regression

Introduction

  • ML Fundamentals
  • ML Common Use Cases
  • Understanding Supervised and Unsupervised Learning Techniques

Clustering

  • Similarity Metrics
  • Distance Measure Types: Euclidean, Cosine Measures
  • Creating predictive models
  • Understanding K-Means Clustering
  • Understanding TF-IDF, Cosine Similarity and their application to Vector Space Model
  • Case study

Implementing Association rule mining

  • What is Association Rules & its use cases?
  • What is Recommendation Engine & it’s working?
  • Recommendation Use-case
  • Case study

Understanding Process flow of Supervised Learning Techniques Decision Tree Classifier

  • How to build Decision trees
  • What is Classification and its use cases?
  • What is Decision Tree?
  • Algorithm for Decision Tree Induction
  • Creating a Decision Tree
  • Confusion Matrix
  • Case stud

Random Forest Classifier

  • What is Random Forests
  • Features of Random Forest
  • Out of Box Error Estimate and Variable Importance
  • Case study

Naive Bayes Classifier

  • Case study

Project Discussion

Problem Statement and Analysis

  • Various approaches to solve a Data Science Problem
  • Pros and Cons of different approaches and algorithms.

Linear Regression

  • Case study
  • Introduction to Predictive Modeling
  • Linear Regression Overview
  • Simple Linear Regression
  • Multiple Linear Regression

Logistic Regression

  • Case study
  • Logistic Regression Overview
  • Data Partitioning
  • Univariate Analysis
  • Bivariate Analysis
  • Multicollinearity Analysis
  • Model Building
  • Model Validation
  • Model Performance Assessment AUC & ROC curves
  • Scorecard

Support Vector Machines

  • Case Study
  • Introduction to SVMs
  • SVM History
  • Vectors Overview
  • Decision Surfaces
  • Linear SVMs
  • The Kernel Trick
  • Non-Linear SVMs
  • The Kernel SVM

Time Series Analysis

  • Describe Time Series data
  • Format your Time Series data
  • List the different components of Time Series data
  • Discuss different kind of Time Series scenarios
  • Choose the model according to the Time series scenario
  • Implement the model for forecasting
  • Explain working and implementation of ARIMA model
  • Illustrate the working and implementation of different ETS models
  • Forecast the data using the respective model
  • What is Time Series data?
  • Time Series variables
  • Different components of Time Series data
  • Visualize the data to identify Time Series Components
  • Implement ARIMA model for forecasting
  • Exponential smoothing models
  • Identifying different time series scenario based on which different Exponential Smoothing model can be applied
  • Implement respective model for forecasting
  • Visualizing and formatting Time Series data
  • Plotting decomposed Time Series data plot
  • Applying ARIMA and ETS model for Time Series forecasting
  • Forecasting for given Time period
  • Case Study

Machine Learning Project

Machine learning algorithms Python

  • Various machine learning algorithms in Python
  • Apply machine learning algorithms in Python

Feature Selection and Pre-processing

  • How to select the right data
  • Which are the best features to use
  • Additional feature selection techniques
  • A feature selection case study
  • Preprocessing
  • Preprocessing Scaling Techniques
  • How to preprocess your data
  • How to scale your data
  • Feature Scaling Final Project

Which Algorithms perform best

  • Highly efficient machine learning algorithms
  • Bagging Decision Trees
  • The power of ensembles
  • Random Forest Ensemble technique
  • Boosting – Adaboost
  • Boosting ensemble stochastic gradient boosting
  • A final ensemble technique

Model selection cross validation score

  • Introduction Model Tuning
  • Parameter Tuning GridSearchCV
  • A second method to tune your algorithm
  • How to automate machine learning
  • Which ML algo should you choose
  • How to compare machine learning algorithms in practice

Text Mining& NLP

  • Sentimental Analysis
  • Case study

PySpark and MLLib

  • Introduction to Spark Core
  • Spark Architecture
  • Working with RDDs
  • Introduction to PySpark
  • Machine learning with PySpark – Mllib

Deep Learning & AI

  • Case Study
  • Deep Learning Overview
  • The Brain vs Neuron
  • Introduction to Deep Learning

Introduction to Artificial Neural Networks

  • The Detailed ANN
  • The Activation Functions
  • How do ANNs work & learn
  • Gradient Descent
  • Stochastic Gradient Descent
  • Backpropogation
  • Understand limitations of a Single Perceptron
  • Understand Neural Networks in Detail
  • Illustrate Multi-Layer Perceptron
  • Backpropagation – Learning Algorithm
  • Understand Backpropagation – Using Neural Network Example
  • MLP Digit-Classifier using TensorFlow
  • Building a multi-layered perceptron for classification
  • Why Deep Networks
  • Why Deep Networks give better accuracy?
  • Use-Case Implementation
  • Understand How Deep Network Works?
  • How Backpropagation Works?
  • Illustrate Forward pass, Backward pass
  • Different variants of Gradient Descent

Convolutional Neural Networks

  • Convolutional Operation
  • Relu Layers
  • What is Pooling vs Flattening
  • Full Connection
  • Softmax vs Cross Entropy
  • Building a real world convolutional neural network  for image classification

Download Brochure

Reviews Statistic

5
5 out of 5
2 Ratings
5 Start 2
4 Start 0
3 Start 0
2 Start 0
1 Start 0

2 reviews for Artificial Intelligence Training

  1. Avatar
    5 out of 5

    :

    Provide all notes fr evry topic over all system is very good gret experience to learn here

  2. Avatar
    5 out of 5

    :

    Very well organized set of Artificial intelligence Training Material. Ideal to grow knowledge on Artificial Intelligence & Machine Learning. Highly recommended!

Add a review

Course Features
LEVEL BEGINNER / EXPERT
DURATION 45 - HOURS
TYPE INSTRUCTOR-LED
DELIVERY ONLINE, INSTRUCTOR-LED
CATEGORY IT TECHNICAL
WeCreativez WhatsApp Support
Our Training support Team is here to answer your questions. Ask us anything!
👋 Hi, how can I help?